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1. INTRODUCTION 

Cloud Computing is an emerging and innovative platform, which makes computing and storage 

available to the end-users as services. The cloud is a “blob” of unstructured resources that are 

classified into three domains: (a) applications (or software), (b) platform, and (c) infrastructure. 

The cloud is a merger of business and computing models, which makes it a very important 

scientific and business medium for the end-users. Cloud Computing has established a widespread 

adoption in various domains, such as research, business, health, e-commerce, agriculture, and 

social life. Recently, cloud computing has increasingly been employed for a wide range of 

applications in various research domains, such as agriculture, smart grids, e-commerce, scientific 

applications, healthcare, and nuclear science. In the “Market Trends” report by Gartner, it is 

estimated that the cloud-based business services and Software-as-a-Service (SaaS) market will 

increase from $13.4 to $32.2 billion from 2011 to 2016. Similarly, Infrastructure-as-a-Service 

(IaaS) and Platform-as-a-Service (PaaS) market is estimated to grow from $7.6 billion to $35.5 

billion from 2011 to 2016. The cloud investments have delivered around $4 billion benefit yield 

in the last five years. 

 

As the cloud computing systems continue to grow in scale and complexity, it is of critical 

importance to ensure the stability, availability, and reliability in such systems. The varying 

execution environments, addition and removal of system components, frequent updates and 

upgrades, online repairs, intensive workload on servers, to name a few, are the primary reasons 

that can induce failures and faults in the large-scaled complex and dynamic environments of 

cloud computing. The reliability of such systems can be easily compromised if the proactive 

measures are not taken to tackle against the possible failures emerging in cloud subsystems. For 

instance, Google reported a 20 percent revenue loss, when an experiment caused an additional 

delay of 500 ms in the response time (Greenberg et al. 2009). Moreover, Amazon reported a 1 

percent sales decrease for an additional delay of 100 ms in search results (Greenberg et al 2009). 

A minor failure in the O2 network (a leading cellular service provider in the UK) affected around 

seven million customers for three days (ITProPortal 2012). Similarly, a core switch failure in the 

BlackBerry’s network left millions of customers without Internet access for three days 

(ITProPortal 2012).  
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To achieve reliability, and as a countermeasure for faults and failures, the cloud service providers 

adopt various mechanisms to implement fault tolerance at the system level. Fault tolerance is a 

vital issue in cloud computing platforms and applications. Fault tolerance enables a system to 

continue operation, possibly at a reduced level, rather than failing completely, when some 

subcomponent of the system malfunctions unexpectedly. The significance of the interconnection 

networks is obvious from the abovementioned discussion, providing adequate evidences for the 

fault tolerance requirement of the network.  

 

Because of the diversity in nature and needs of various services deployed in a cloud 

environment, fault tolerance also has a pivotal role in maintaining the Service Level Agreements 

(SLAs), as well as, the desired levels of Quality of Service (QoS). The SLAs define various rules 

to regulate the availability of the cloud service to the end users.  Virtualization in cloud assigns 

various services at different levels of access to numerous subscribers. Virtualization and multiple 

subscriptions with diversifying SLAs and QoS requirements significantly raise the complexity 

and unpredictability of cloud environments.  

 

1.1. Types of Faults 

The faults can be of various types including: (a) transient, intermittent, or permanent hardware 

faults, (b) software bugs and design errors, (c) operator errors, and (d) externally induced faults 

and errors. In a typical cloud environment, the faults appear as failure of resources, such as 

applications/hardware storage, that are being used by the end users. The two most commonly 

occurring faults in cloud environment are:  

 

A) Byzantine failures 

In such type of faults, the system components fail in arbitrary ways, causing the system to 

incorrectly behave in unpredictable manner. The system may process requests incorrectly and 

produce inconsistent outputs.  

  

B) Crash failures 

When the crash failures occur, they cause the system components to completely stop functioning 

or remain inactive during failures. For instance, the failures due to power outages or hard disk 

crash.  

 

As discussed earlier, the cloud computing is divided into several operational layers, such as 

PaaS, SaaS, and IaaS. If a failure occurs in one of the aforementioned layers, then this layer 

affects the services offered by the layers above it. For instance, failure in PaaS may produce 

errors in the software services offered by SaaS. However, if a failure occurs in physical hardware 

layer (IaaS), then this may negatively affect both the PaaS and SaaS layers. This implies that the 

impact of failures occurred at hardware level is significantly high, and it is of critical importance 

to devise fault-tolerant strategies at hardware level. The supporting research in the fault-tolerance 

computing involves system architecture, design techniques, coding theory, testing, validation, 

proof of correctness, modeling, software reliability, operating systems, parallel processing, and 

real-time processing. 
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1.2. Redundancy 

A practical approach of implementing fault tolerance is through redundancy that involves 

duplication of hardware and software components, such that if a component or a process fails, 

the backup process or component is available to take place of primary. Some of the vendors have 

been involved in developing computing solutions with built-in capability of fault tolerance. For 

instance, Stratus Computers produce a duplex-self checking computers, where each computer 

belonging to a duplex pair is internally duplicated and runs synchronously. If one of the machine 

fails, the duplication allows the other machine of the pair to continue the computations without 

delay. Similarly, the Tandem Computers utilize a number of independent identical processors 

and redundant storage devices and controllers to provide automatic recovery in the case of a 

hardware or software failure. 

 

1.3. Fault-Tolerance Validation 

The cloud service providers need to perform the fault tolerance/availability analysis of the 

services they provide to the end users. The fault-tolerance validation of a service is of critical 

importance to ensure the SLAs are properly adhered. However, due to a numerous stochastic 

factors involved, it is quite difficult to verify that a fault-tolerant machine will meet the reliability 

requirements. To aid in the assessment of system reliability, a great deal of research has been 

conducted recently in experimental testing by making use of a methodology known as fault-

injection. Fault injection is an important method to mimic the occurrence of errors in a controlled 

environment to make the necessary measurements. A number of stochastic models based on 

probability computations have been developed that utilize Markov and semi-Markov processes 

to perform the availability analysis of a fault-tolerant machine. These models have been 

implemented in several computer-aided design tools. Some of the well-known tools are: (a)  

HARP–Hybrid Automated Reliability Predictor (developed in Duke University), (b)  SAVE–

System Availability Estimator (IBM), (c) SHARPE–Symbolic Hierarchical Automated 

Reliability and Performance Evaluator (Duke University), (d) UltraSAN– (University of Illinois, 

UIUC), and (e) DEPEND – (UIUC). The aforementioned tools are utilized to perform various 

measures of interest, such as latency, coverage, and fault rates. We define some of the fault-

tolerance measurements in the next subsection. 

 

1.4. Fault Tolerance Measures 

Fault tolerance measurement is a crucial aspect of cloud paradigm. Fault tolerance measures can 

be used to quantify the dependability of the cloud system. Two of the major legacy measures for 

fault tolerance of the system are: (a) availability and (b) reliability (Koren & Krishna 2010). 

Availability is the ratio between the uptime and sum of the uptime and downtime of the system. 

Availability can be quantified as: 

 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 . (1) 

 

The uptime and downtime values are either predicted by using the mathematical modeling 

techniques, such as Markov availability model, or can be calculated from the actual field 

measurements (Bauer & Adams 2012). Availability can also be measured as a percentage of 

agreed service time and downtime of system. The agreed service time is the expected operational 
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time of the system per month. The planned downtime of the system is explicitly excluded from 

the agreed service time. The availability of the system can be calculated as: 

 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝐴𝑔𝑟𝑒𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒 − 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒

𝐴𝑔𝑟𝑒𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒
 × 100 . (2) 

 

Availability of the system can also be quantified using metrics, such as Mean Time to Failure 

(MTTF), Mean Time Between Failures (MTBF), and Mean Time to Repair (MTTR). The MTTF 

is the average time of the system operating accurately until a failure occurs.  The MTBF is the 

average time between two consecutive failures of the system. The MTTR measure predicts the 

average time required to replace the faulty component of the system to bring the system back to 

operational mode. Availability of the system in terms of MTBF and MTTR can be computed as: 

 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
 (3) 

 

Reliability, denoted as R(t),  is the probability of the system to work accurately as a function of 

time ‘t’ (Koren & Krishna 2010). The TL9000 measurement handbook defines reliability as “the 

ability of an item to perform a required function under stated conditions for a stated time period” 

(Bauer & Adams 2012). Service reliability can be formulated as: 

 

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 × 100 . (4) 

 

Because most of the services are highly reliable, services are quantified by the defective/ 

unsuccessful transactions per million attempts. Defects Per Million (DPM) can be formulates as: 

 

𝐷𝑃𝑀 =  
(𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 − 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑞𝑢𝑒𝑠𝑡
 × 1,000,000 . (5) 

 

The availability and reliability of the system holds a pivotal role in the cloud paradigm. A small 

fraction of downtime has severe financial impacts. It has been reported that a single hour of 

downtime costs around $50,000 in a data center (Bilal et al. 2014). Therefore, round the clock 

availability of the cloud services are vital. 

 

In this chapter, we discuss fault tolerance in the cloud and illustrate various fault tolerance 

strategies existing in the literature. The rest of the chapter is as follows. In Section 2, we discuss 

the different fault tolerant strategies for cloud and provide taxonomy of fault-tolerant 

approaches. Section 3 concludes the book chapter. 

 

2. FAULT TOLERANT STRATEGIES IN CLOUD 

Crash and failures are very common in the cloud, such as disk failure or link failure. Moreover, 

the number of nodes (servers) involved in the cloud has an order of tens of thousands or more 

servers that increases the probability and cost of the failures. The jobs executing over the cloud 

may have a time span that may evolve for few days. The effect of failure on medium or long 

running jobs can lead to jeopardizing the fulfillment of SLA contract and wastage of 
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computation time. For instance, a task requires 24 hours to complete, and if after 23 hours the 

node that was executing the task crashes, then almost one day of execution will be wasted in the 

aforementioned scenario and it will also lead to the violation of the SLA. One way to tackle such 

problem is to execute a backup process on a different system for each primary process. The 

primary process in this case is responsible for checkpointing the current state to redundant disks. 

Should the primary process fail, the backup process can restart from the last checkpoint. 

Generally, the fault-tolerant systems characterize the recovery from errors as either roll-forward 

or roll-back. Roll forward mechanism takes the system state at the time when the error was 

detected in order to correct the error, and from there the system moves forward. Alternatively, 

the roll-back mechanism utilize checkpointing to revert the system state to some earlier correct 

state, and the system moves forward from that state. The operations between the checkpoint and 

the erroneous state can be made idempotent, as per requirement of roll-back recovery. Some 

systems make use of both roll-forward and roll-back recovery for different errors or different 

parts of one error. We discuss checkpointing in detail in the next subsection. 

 

2.1. Checkpoint-based Fault Tolerance 

To avoid the aforesaid problem, checkpoint mechanisms have been proposed and implemented 

on the cloud. This mechanism records the system state periodically after certain time limit so that 

if a failure occurs, the last checkpoint state of the system is restored and the task execution is 

resumed from that point. However, significant overheads are associated with the application of 

checkpoint strategy as they can be expensive in terms of performance. In case of virtualized 

environment, such as the cloud, the checkpoint strategy becomes more challenging, where huge 

Virtual Machine (VM) images needs to saved and restored (Goiri et al. 2010). In the said 

perspective, several researchers have proposed different approaches to make the use of 

checkpoint efficient in the cloud. In the following subsections, we will discuss and highlight 

some of the recent checkpoint based fault tolerant approaches that are deployed in the cloud.  

 

A) Disk- and diskless-based checkpointing schemes 

Message Passing Interface (MPI) is generally used to achieve parallelism in high performance 

computing. The MPI is a language-independent communications protocol that supports both 

point-to-point and collective communications. The goal of MPI is to attain high performance, 

scalability, and portability. To achieve fault tolerance in MPI-based applications, several 

strategies have been proposed, such as BlobCR (Nicolae & Cappello 2011) that are specifically 

optimized for tightly coupled scientific applications written using MPI and are needed to be 

ported to IaaS cloud. Two techniques are widely adopted to achieve fault tolerance in cloud, 

replication (redundancy) and checkpoint. For tightly coupled applications, redundancy implies 

that all components of the process (which is itself part of a distributed application) must also be 

replicated. The reason for such replication is that a failure of one process results in a global 

failure of all processes and eventually leads to process termination. Therefore, in tightly coupled 

applications, checkpoint approaches provide a feasible solution than replication. The BlobCR use 

a dedicated repository of checkpoints that periodically takes the snapshots of the disk attached to 

the virtual machine. The aforesaid approach allow using any checkpointing protocol to save the 

state of processes into files, including application level (where the process state is managed by 

the application itself) and process level mechanism (where the process state is managed 

transparently at the level of the message passing library). Moreover, the BlobCR also introduces 

a support that allows I/O operations performed by the application to rollback. The BlobCR 
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brings a checkpointing time speedup of up to 8x as compared to the full VM snapshotting based 

on qcow2 over Parallel Virtual File System (PVFS) (Gagne 2007). The checkpoints performed 

on the whole state of VM are expensive. However, using only a snapshot of the portion of disk is 

smaller and faster, even if a reboot is needed.  

 

The disk-based checkpointing strategies are widely used. However, the applications that require 

checkpointing frequently, leads to several disk accesses that results in a performance bottleneck. 

In the said perspective, several diskless-based checkpoint strategies have been proposed, such as 

a multi-level diskless checkpointing (Hakkarinen & Chen 2013).  In multi-level checkpointing, 

there are N-level of diskless checkpoints. Multiple levels of checkpoints reduce the overhead for 

tolerating a simultaneous failure of N processors by layering the diskless checkpointing schemes 

for a simultaneous failure of i processors. For example, an N-failure checkpoint can recover any 

number of failures from 1, 2,…, N. The multi-level diskless checkpointing scheme can 

significantly reduce the fault tolerance time as compared to a one-level scheme. To perform the 

multi-level diskless checkpointing, a schedule for diskless checkpoints must be developed for 

each level of recovery, such as one, two, or N simultaneous failures. When the checkpoints are 

scheduled, the processor takes specific steps to perform the recovery. For instance, if one-level 

checkpoint is scheduled, then processor will take only one step back for the recovery. The 

coordination of the checkpoints among the processors is important for the consistency of the 

checkpoints. If a failure is detected, then an N-level diskless checkpointing mechanism will 

attempt to use the most recent checkpoint to recover the state. However, if another failure occurs 

during the recovery, then the mechanism will use most recent two-level checkpoint to restore the 

state. If the number of failure exceeds the number that is supported, then the system needs to 

restart the computation. For any diskless checkpoint there is an overhead of both communication 

and calculation. The difference between the disk and diskless checkpointing is prominent when a 

failure occurs during a recovery. The system simply restarts from the same checkpoint in disk-

based checkpointing. However, in diskless checkpointing, an earlier checkpoint is used to restore 

the state of the system.  

 

B)  Checkpoint placement scheme 

The number of checkpoints inserted can significantly decrease the performance of the system 

during recovery. Moreover, the number of checkpoints must be optimal to minimize the storage. 

In the said perspective, several optimized and efficient checkpoint placement strategies are 

proposed. One such optimal checkpoint strategy that maximizes the probability of completing all 

tasks within the deadline is presented in (Kwak & Yang 2012). In real time systems, the 

occurrence of faults is normal rather than exceptions. Every fault is detected at the checkpoint 

that comes first after the fault occurrence. In such strategies, the checkpoints are inserted 

constantly after certain interval at the execution of the tasks. However, the time limit for the 

interval may vary task to task in general. The slack time of each task is identified first and then 

the maximum number of re-executable checkpoints are determined that can meet the deadline of 

the task. In multi-tasking environment, the slack time is calculated not only by the execution 

time of the task but also of execution of the other tasks. Based on the information of the slack 

time, formulas are derived that computes the number of checkpoints needs to be re-executed to 

meet the deadline of the task. The significance of such checkpoint schemes are that they provide 

an integrated solution to multiple real-time tasks by solving a single numerical optimization 

problem. 
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Some smart infrastructures are also proposed, such as in (Goiri et al. 2010) that uses Another 

Union File System (AUFS), which differentiate between the read-only and read-write parts of the 

virtual machine image file. The goal of such infrastructures is to reduce the time needed to make 

a checkpoint that will in return reduce the interference time on task execution. The read-only 

parts can be checkpointed only once and the read-write checkpoints are incrementally 

checkpointed, which means the modifications from the last checkpoints are restored. The 

aforesaid checkpoint mechanism can also be implemented in virtualized environment using Xen 

hypervisor, where the tasks can be executed on VMs created on demand. Making the checkpoint 

of tasks running within a VM may involve moving tons of GBs data as it may include the 

information to resume the task on another node, such as task and memory content, and disks 

information (Malik et al. 2013). Some checkpoints mechanism mounts the base system as a read 

only file system considering the fact that only a small portion of the aforementioned data is 

changing with respect to the VM startup. Moreover, the user modifications are stored in an extra 

disk space called delta disk. Besides delta disk, which contains user modification data, there is 

another read-only disk that contains the base system. The aforementioned disks are merged 

together to form a root file system to start the VM. Once the VM is booted, then the user can 

work with the file system without worrying about the underlying structure. The checkpoints are 

compressed and are stored in Hadoop File System (HDFS) so that the checkpoints are distributed 

and replicated in all the nodes. Moreover, by doing the aforesaid the possibility of single point of 

failure can also been eliminated. 

 

C) Failures/Faults those are hard to recover 

Among all different kind of failures or faults, such as node failures and link failures, the faults 

that are really costly and takes longer time to mitigate are Hardware Failures. In case of cloud 

computing, several VMs are running on a single physical machine. In such an environment, if a 

hardware failure occurs, then all the VMs have to be migrated that incur longer downtime as 

compared to a software or application failure. Moreover, the hardware device may require to be 

replaced, resulting in longer repair times. The reason for the hardware failures to have a 

significant affect is the fact that it may involve (a) device replacement, and (b) migrations, 

including VM migrations, which causes the recovery time to increase. Some faults and errors are 

hard to detect, such as routing and network misconfigurations. Such kind of faults becomes hard 

to recover as it is hard to detect those failures. However, once detected the aforesaid faults 

becomes easy to solve and handle.  

 

2.2 Adaptive Fault Tolerance Techniques 

Adaptive fault tolerance techniques help the system to maintain and improve the system’s fault 

tolerance by adapting to the environmental changes. The adaptive fault tolerance techniques for 

the cloud computing, monitors the state of the system and reconfigure the cloud computing 

system configurations for the stability of the system in case of error detections. In this 

subsection, we will overview, some of the recently proposed adaptive fault tolerance techniques 

for the cloud computing paradigm.  
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A) Fault Tolerance for real time applications (FTRT) 

The real-time applications that execute on cloud environments range from small mobile phones 

to large industrial controls. The highly intensive computing capabilities and scalable virtualized 

environment of the clouds help the systems to execute the tasks in real-time. Most of the real- 

time systems require high safety and reliability. A fault tolerance model for real-time cloud 

computing is proposed in (Malik et al. 2011). The real-time cloud fault tolerance model revolves 

around the reliability of the virtual machines. The reliability of the virtual machines is adaptive 

and changes after ever computing cycle. The proposed technique depends on the adaptive 

behavior of the reliability weights assigned to each processing node. The increase and decrease 

in the reliability depends upon the virtual machines to produce the results within the given time 

frame. The technique uses a metric to evaluate the reliability. The metric assesses the reliability 

level of node against a given minimum reliability threshold. The nodes are removed if the 

processing nodes fail to achieve the minimum required reliability level. The primary focus of the 

system is on the forward recovery mechanism although both forward and backward recovery 

techniques.  

 

B) Dynamic adaptive fault tolerant strategy (DAFT) 

The dynamic adaptive fault tolerant strategy (Sun et al. 2013) observes a mathematical 

relationship between the failure rates and the two most common fault tolerance techniques 

(checkpoints and replications). The historical data of failure rates helps the cloud computing 

system to configure itself for the checkpoints or the replicas. A dynamic adaptive checkpoint and 

replication model is made by combining the above mentioned two techniques to achieve the 

utmost level of service availability and service level objectives (SLOs). The dynamic adaptive 

fault tolerant strategy had been evaluated in large-scale cloud data center on fault tolerance 

degree, fault tolerance overhead, response time, and system centric parameters. The theoretical 

and experimental results presented in the paper (Sun et al. 2013) demonstrate that DAFT 

provides highly efficient fault tolerance and great SLO satisfaction.  

  

C) Fault and Intrusion tolerant cloud computing Hardpan (FITCH) 

The novel fault tolerant architecture for cloud computing, named FITCH (Fault and Intrusion 

tolerant cloud computing Hardpan) supports the dynamic adaptation of replicated services (Cogo 

et al 2013). The FITCH provides a basic interface for adding, removing, and replacing replicas. 

The FITCH interface also provides all the low level actions to provide end-to-end service 

adaptability. The technique was originally designed for the two replication services: a crash fault 

tolerant web service and a Byzantine fault tolerant (BFT) key-value store based on state machine 

replication. Both the services when deployed with FITCH are easily extendable and adaptable to 

various workloads through horizontal and vertical scalability. The number of computing 

instances that are responsible for providing the service are increased or decreased in the 

horizontal scalability. When there is a requirement to handle the peak users request or to handle 

as many faults as possible, the number of computing resources is increased. The decrease in the 

number of resources is adapted when there is a requirement to save resources and money. The 

vertical scalability is achieved by increasing or decreasing the size and capacity of the allocated 

resources. The FITCH adapts the horizontal and vertical scalability depending on the 

requirement.  
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D) Byzantine fault tolerance cloud (BFTCloud) 

The BFTCloud is a fault tolerant architecture for the voluntary-resource cloud computing (Zhang 

et al. 2011). In voluntary-resource cloud computing, infrastructure consists of numerous user-

contributed resources unlike the well managed architecture provided by a large cloud provider. 

The architecture of BFTCloud is based on a Byzantine fault tolerance approach. The 

architectures operate on five basic operations, the primary node selection, replica selection, 

request execution, primary node updating, and replica updating. The primary node is selected 

based on QoS requirements. The request for the service is handled by the primary node. The 

primary node also selects the 3f+1 replicas from the pool based on QoS requirements. All the 

replicas and primary node perform the operation on the request and send back the result to the 

primary node. Based on the result, the primary node decides to update the other primary node or 

update the replicas. In primary updating, one of the replicas is updated to primary node. In 

replica updating, the faulty replica is replaced with a new one. The BFTCloud provides high 

reliability and fault tolerance along with better performance. 

 

E) Low latency fault tolerance (LLFT) middleware 

A low latency fault tolerance (LLFT) middleware uses the leader/follower replication approach 

(Zhao et al. 2010). The middleware consists of a low latency messaging protocol, a leader-

determiner membership protocol, and a virtual determiner framework. The low latency message 

protocol provides a reliable and ordered multicast service by communicating a message ordering 

information. The ordering is determined by the primary replica in the group. The technique 

involves fewer messages as compared to prior fault tolerance systems.  A fast reconfiguration 

and recovery service is provided by the membership protocol. The reconfiguration service is 

required whenever the fault occurs at the replica or some replica joins or leaves the group. The 

membership protocol is faster as it finds the primary node deterministically based on the rank 

and the degree of the backups. The virtual determiner framework takes the ordering information 

from the primary replica and ensures that all the backups get the same ordering information. The 

LLFT middleware provides a high degree of fault tolerance and achieves low end-to-end latency.  

  

F) Intermediate data fault tolerant (IFT) 

The term intermediate data is defined as the data that is generated during the parallel dataflow 

program (Ko et al. 2010). The technique considers the intermediate data as of high priority (first 

class citizen).  The other techniques either use the store-local approach or distributed file system 

(DFS) approach. In store-local approach the data is not replicated and is used in Map outputs in 

Hadoop. Although the approach is efficient but is not fault tolerant. In case of a failure of a 

server that stores the intermediate data, results in the re-execution of the tasks. In the DFS 

approach the data is replicated, but causes too much network overhead. The network overhead 

results in the delay of jobs completion time. The DFS approach is used for reduce outputs in 

Hadoop.  There are three techniques for intermediate data fault tolerance: 1) asynchronous 

replication of intermediate data, 2) replication of selective intermediate data, and 3) exploiting 

the inherent bandwidth of the cloud data center topology. A new storage system termed as 

Intermediate Storage System (ISS) implements the above mentioned techniques for Hadoop. 

Hadoop with ISS outperforms the base Hadoop under failure scenarios. 
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G) MapReduce fault tolerance with low latency (MFTLL) 

The MapReduce fault tolerance with low latency technique is a passive replication technique on 

the top of re-execution of the MapReduce jobs to improve the overall execution time (Zheng 

2010). The technique utilizes the extra copies for the tasks in cloud to improve MapReduce fault 

tolerance while keeping the latency low. The technique is referred as a passive replication 

technique as in passive replication, all copies do not need to be in running state as compared to 

the active replication technique. The proposed technique allocates a few (k) backup copies of the 

tasks. The backup assignment for each task is based on data locality and on rack locality. The 

placement of the back in the locality avoids the heavy network traffic. The backup copy is only 

executed if the primary task is failed. The resources which take longer time to execute 

(stragglers) are also identified and for these stragglers backups are executed in parallel.  The 

MapReduce users or cloud providers decide the value of k based on the failure statistics.  The 

technique also uses a heuristic to schedule backups, move backup instances, and select the 

backups upon failure for fast recovery.  

 

H) Adaptive Anomaly Detection System for Cloud Computing Infrastructures (AAD) 

An adaptive anomaly detection (AAD) system for cloud computing infrastructure ensures the 

availability of the cloud (Pannu et al. 2012). The framework uses the cloud performance data to 

discover the future failures. The predicted possible failures are verified by the cloud operators. 

The failures are marked as true or false failures on verification. The algorithm recursively learns 

and improve the future failure prediction on the verified data. The framework also takes into 

account the actual failures that were not previously detected.  

 

In Table 1, we provide a summary of various fault tolerant techniques discussed above. The 

schemes are categorized on the basis of methodology, programming framework, environment, 

and the type of faults detected. 

 

Table 1: Summary of fault-tolerant strategies. 

 

Strategy 
Fault Tolerant 

Technique 

Programming 

Framework 
Environment Faults detected 

(Nicolae & 

Cappello 2011) 

Disk-based 

Checkpoint 
MPI IaaS cloud Node/ network failure 

(Hakkarinen & 

Chen 2013) 

Diskless-based 

Checkpoint 
NA HPC 

Process/Application 

failure 

(Kwak & Yang 

2012) 
Checkpoint 

Probability 

analytic 

framework  

Real-time 

systems 
Process failures 

(Goiri et al. 2010) Checkpoint Java 
Virtual 

Machine  
Node failure 

(Malik et al. 2011) FTRT (Adaptive) - Real-time - 

(Sun et al. 2013) DAFT (Adaptive) Java 
Large scale 

Cloud 

Works on historical 

failure rate 

(Cogo et al 2013) FITCH (Adaptive) Java 
Large scale 

Cloud 
- 

(Zhang et al. 2011) 
BFTCloud 

(Adaptive) 
Java 

Voluntary-

resource cloud 
Byzantine  Problems 
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(Zhao et al. 2010) LLFT (Adaptive) C++ Middleware Replication faults 

(Ko et al. 2010) IFT(Adaptive) Hadoop Hadoop 
Intermediate data 

faults 

(Zheng 2010) 
MFTLL 

(Adaptive) 
MapReduce MapReduce 

Replication faults, 

stragglers detection 

(Pannu et al. 2012) AAD (Adaptive) --- Local Cloud 
Discovers future 

failures 

 

 

 

 

4. CONCLUSIONS 

 

In this chapter, we study the fault tolerance and illustrate various state of the art fault tolerant 

strategies for the cloud environments. Fault tolerance is a major concern in the cloud 

environments to guarantee availability of critical services, application execution, and hardware. 

As the cloud computing systems continue to grow in their scale and complexity, it is of critical 

importance to ensure the stability, availability, and reliability in such systems. The cloud 

environments are susceptible to failure because of varying execution environments, addition and 

removal of system components, frequent updates and upgrades, online repairs, intensive 

workload on the servers. The reliability of such systems can be easily compromised if the 

proactive measures are not taken to tackle the possible failures emerging in the cloud 

subsystems. We discussed various types of faults, and the different ways that are in use to tackle 

such faults. The chapter also mentions some the methods to validate the fault-tolerance of a 

system and the various metrics that quantify the fault-tolerance. In the end, we discuss the state 

of the art techniques for fault tolerance in cloud and a taxonomy of fault tolerant schemes is also 

presented. 
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