
1

Fault Tolerance in the Cloud

Kashif Bilal*1, Osman Khalid1, Saif Ur Rehman Malik1, Muhammad Usman Shahid Khan1,

Samee U. Khan1, and Albert Zomaya2

1{kashif.bilal*, osman.khalid, saif.rehmanmalik, ushahid.khan, samee.khan}@ndsu.edu

2albert.zomaya@sydney.edu.au

1North Dakota State University, Fargo, ND, USA.

2School of Information Technologies, Sydney University, Australia.

Keywords: Cloud Computing, Fault Tolerance, Service Level Agreement, Verification.

1. INTRODUCTION

Cloud Computing is an emerging and innovative platform, which makes computing and storage

available to the end-users as services. The cloud is a “blob” of unstructured resources that are

classified into three domains: (a) applications (or software), (b) platform, and (c) infrastructure.

The cloud is a merger of business and computing models, which makes it a very important

scientific and business medium for the end-users. Cloud Computing has established a widespread

adoption in various domains, such as research, business, health, e-commerce, agriculture, and

social life. Recently, cloud computing has increasingly been employed for a wide range of

applications in various research domains, such as agriculture, smart grids, e-commerce, scientific

applications, healthcare, and nuclear science. In the “Market Trends” report by Gartner, it is

estimated that the cloud-based business services and Software-as-a-Service (SaaS) market will

increase from $13.4 to $32.2 billion from 2011 to 2016. Similarly, Infrastructure-as-a-Service

(IaaS) and Platform-as-a-Service (PaaS) market is estimated to grow from $7.6 billion to $35.5

billion from 2011 to 2016. The cloud investments have delivered around $4 billion benefit yield

in the last five years.

As the cloud computing systems continue to grow in scale and complexity, it is of critical

importance to ensure the stability, availability, and reliability in such systems. The varying

execution environments, addition and removal of system components, frequent updates and

upgrades, online repairs, intensive workload on servers, to name a few, are the primary reasons

that can induce failures and faults in the large-scaled complex and dynamic environments of

cloud computing. The reliability of such systems can be easily compromised if the proactive

measures are not taken to tackle against the possible failures emerging in cloud subsystems. For

instance, Google reported a 20 percent revenue loss, when an experiment caused an additional

delay of 500 ms in the response time (Greenberg et al. 2009). Moreover, Amazon reported a 1

percent sales decrease for an additional delay of 100 ms in search results (Greenberg et al 2009).

A minor failure in the O2 network (a leading cellular service provider in the UK) affected around

seven million customers for three days (ITProPortal 2012). Similarly, a core switch failure in the

BlackBerry’s network left millions of customers without Internet access for three days

(ITProPortal 2012).

2

To achieve reliability, and as a countermeasure for faults and failures, the cloud service providers

adopt various mechanisms to implement fault tolerance at the system level. Fault tolerance is a

vital issue in cloud computing platforms and applications. Fault tolerance enables a system to

continue operation, possibly at a reduced level, rather than failing completely, when some

subcomponent of the system malfunctions unexpectedly. The significance of the interconnection

networks is obvious from the abovementioned discussion, providing adequate evidences for the

fault tolerance requirement of the network.

Because of the diversity in nature and needs of various services deployed in a cloud

environment, fault tolerance also has a pivotal role in maintaining the Service Level Agreements

(SLAs), as well as, the desired levels of Quality of Service (QoS). The SLAs define various rules

to regulate the availability of the cloud service to the end users. Virtualization in cloud assigns

various services at different levels of access to numerous subscribers. Virtualization and multiple

subscriptions with diversifying SLAs and QoS requirements significantly raise the complexity

and unpredictability of cloud environments.

1.1. Types of Faults

The faults can be of various types including: (a) transient, intermittent, or permanent hardware

faults, (b) software bugs and design errors, (c) operator errors, and (d) externally induced faults

and errors. In a typical cloud environment, the faults appear as failure of resources, such as

applications/hardware storage, that are being used by the end users. The two most commonly

occurring faults in cloud environment are:

A) Byzantine failures

In such type of faults, the system components fail in arbitrary ways, causing the system to

incorrectly behave in unpredictable manner. The system may process requests incorrectly and

produce inconsistent outputs.

B) Crash failures

When the crash failures occur, they cause the system components to completely stop functioning

or remain inactive during failures. For instance, the failures due to power outages or hard disk

crash.

As discussed earlier, the cloud computing is divided into several operational layers, such as

PaaS, SaaS, and IaaS. If a failure occurs in one of the aforementioned layers, then this layer

affects the services offered by the layers above it. For instance, failure in PaaS may produce

errors in the software services offered by SaaS. However, if a failure occurs in physical hardware

layer (IaaS), then this may negatively affect both the PaaS and SaaS layers. This implies that the

impact of failures occurred at hardware level is significantly high, and it is of critical importance

to devise fault-tolerant strategies at hardware level. The supporting research in the fault-tolerance

computing involves system architecture, design techniques, coding theory, testing, validation,

proof of correctness, modeling, software reliability, operating systems, parallel processing, and

real-time processing.

3

1.2. Redundancy

A practical approach of implementing fault tolerance is through redundancy that involves

duplication of hardware and software components, such that if a component or a process fails,

the backup process or component is available to take place of primary. Some of the vendors have

been involved in developing computing solutions with built-in capability of fault tolerance. For

instance, Stratus Computers produce a duplex-self checking computers, where each computer

belonging to a duplex pair is internally duplicated and runs synchronously. If one of the machine

fails, the duplication allows the other machine of the pair to continue the computations without

delay. Similarly, the Tandem Computers utilize a number of independent identical processors

and redundant storage devices and controllers to provide automatic recovery in the case of a

hardware or software failure.

1.3. Fault-Tolerance Validation

The cloud service providers need to perform the fault tolerance/availability analysis of the

services they provide to the end users. The fault-tolerance validation of a service is of critical

importance to ensure the SLAs are properly adhered. However, due to a numerous stochastic

factors involved, it is quite difficult to verify that a fault-tolerant machine will meet the reliability

requirements. To aid in the assessment of system reliability, a great deal of research has been

conducted recently in experimental testing by making use of a methodology known as fault-

injection. Fault injection is an important method to mimic the occurrence of errors in a controlled

environment to make the necessary measurements. A number of stochastic models based on

probability computations have been developed that utilize Markov and semi-Markov processes

to perform the availability analysis of a fault-tolerant machine. These models have been

implemented in several computer-aided design tools. Some of the well-known tools are: (a)

HARP–Hybrid Automated Reliability Predictor (developed in Duke University), (b) SAVE–

System Availability Estimator (IBM), (c) SHARPE–Symbolic Hierarchical Automated

Reliability and Performance Evaluator (Duke University), (d) UltraSAN– (University of Illinois,

UIUC), and (e) DEPEND – (UIUC). The aforementioned tools are utilized to perform various

measures of interest, such as latency, coverage, and fault rates. We define some of the fault-

tolerance measurements in the next subsection.

1.4. Fault Tolerance Measures

Fault tolerance measurement is a crucial aspect of cloud paradigm. Fault tolerance measures can

be used to quantify the dependability of the cloud system. Two of the major legacy measures for

fault tolerance of the system are: (a) availability and (b) reliability (Koren & Krishna 2010).

Availability is the ratio between the uptime and sum of the uptime and downtime of the system.

Availability can be quantified as:

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑈𝑝𝑡𝑖𝑚𝑒

𝑈𝑝𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒
 . (1)

The uptime and downtime values are either predicted by using the mathematical modeling

techniques, such as Markov availability model, or can be calculated from the actual field

measurements (Bauer & Adams 2012). Availability can also be measured as a percentage of

agreed service time and downtime of system. The agreed service time is the expected operational

4

time of the system per month. The planned downtime of the system is explicitly excluded from

the agreed service time. The availability of the system can be calculated as:

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
𝐴𝑔𝑟𝑒𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒 − 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒

𝐴𝑔𝑟𝑒𝑒𝑑𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒
 × 100 . (2)

Availability of the system can also be quantified using metrics, such as Mean Time to Failure

(MTTF), Mean Time Between Failures (MTBF), and Mean Time to Repair (MTTR). The MTTF

is the average time of the system operating accurately until a failure occurs. The MTBF is the

average time between two consecutive failures of the system. The MTTR measure predicts the

average time required to replace the faulty component of the system to bring the system back to

operational mode. Availability of the system in terms of MTBF and MTTR can be computed as:

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
 (3)

Reliability, denoted as R(t), is the probability of the system to work accurately as a function of

time ‘t’ (Koren & Krishna 2010). The TL9000 measurement handbook defines reliability as “the

ability of an item to perform a required function under stated conditions for a stated time period”

(Bauer & Adams 2012). Service reliability can be formulated as:

𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 × 100 . (4)

Because most of the services are highly reliable, services are quantified by the defective/

unsuccessful transactions per million attempts. Defects Per Million (DPM) can be formulates as:

𝐷𝑃𝑀 =
(𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 − 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠)

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑞𝑢𝑒𝑠𝑡
 × 1,000,000 . (5)

The availability and reliability of the system holds a pivotal role in the cloud paradigm. A small

fraction of downtime has severe financial impacts. It has been reported that a single hour of

downtime costs around $50,000 in a data center (Bilal et al. 2014). Therefore, round the clock

availability of the cloud services are vital.

In this chapter, we discuss fault tolerance in the cloud and illustrate various fault tolerance

strategies existing in the literature. The rest of the chapter is as follows. In Section 2, we discuss

the different fault tolerant strategies for cloud and provide taxonomy of fault-tolerant

approaches. Section 3 concludes the book chapter.

2. FAULT TOLERANT STRATEGIES IN CLOUD

Crash and failures are very common in the cloud, such as disk failure or link failure. Moreover,

the number of nodes (servers) involved in the cloud has an order of tens of thousands or more

servers that increases the probability and cost of the failures. The jobs executing over the cloud

may have a time span that may evolve for few days. The effect of failure on medium or long

running jobs can lead to jeopardizing the fulfillment of SLA contract and wastage of

5

computation time. For instance, a task requires 24 hours to complete, and if after 23 hours the

node that was executing the task crashes, then almost one day of execution will be wasted in the

aforementioned scenario and it will also lead to the violation of the SLA. One way to tackle such

problem is to execute a backup process on a different system for each primary process. The

primary process in this case is responsible for checkpointing the current state to redundant disks.

Should the primary process fail, the backup process can restart from the last checkpoint.

Generally, the fault-tolerant systems characterize the recovery from errors as either roll-forward

or roll-back. Roll forward mechanism takes the system state at the time when the error was

detected in order to correct the error, and from there the system moves forward. Alternatively,

the roll-back mechanism utilize checkpointing to revert the system state to some earlier correct

state, and the system moves forward from that state. The operations between the checkpoint and

the erroneous state can be made idempotent, as per requirement of roll-back recovery. Some

systems make use of both roll-forward and roll-back recovery for different errors or different

parts of one error. We discuss checkpointing in detail in the next subsection.

2.1. Checkpoint-based Fault Tolerance

To avoid the aforesaid problem, checkpoint mechanisms have been proposed and implemented

on the cloud. This mechanism records the system state periodically after certain time limit so that

if a failure occurs, the last checkpoint state of the system is restored and the task execution is

resumed from that point. However, significant overheads are associated with the application of

checkpoint strategy as they can be expensive in terms of performance. In case of virtualized

environment, such as the cloud, the checkpoint strategy becomes more challenging, where huge

Virtual Machine (VM) images needs to saved and restored (Goiri et al. 2010). In the said

perspective, several researchers have proposed different approaches to make the use of

checkpoint efficient in the cloud. In the following subsections, we will discuss and highlight

some of the recent checkpoint based fault tolerant approaches that are deployed in the cloud.

A) Disk- and diskless-based checkpointing schemes

Message Passing Interface (MPI) is generally used to achieve parallelism in high performance

computing. The MPI is a language-independent communications protocol that supports both

point-to-point and collective communications. The goal of MPI is to attain high performance,

scalability, and portability. To achieve fault tolerance in MPI-based applications, several

strategies have been proposed, such as BlobCR (Nicolae & Cappello 2011) that are specifically

optimized for tightly coupled scientific applications written using MPI and are needed to be

ported to IaaS cloud. Two techniques are widely adopted to achieve fault tolerance in cloud,

replication (redundancy) and checkpoint. For tightly coupled applications, redundancy implies

that all components of the process (which is itself part of a distributed application) must also be

replicated. The reason for such replication is that a failure of one process results in a global

failure of all processes and eventually leads to process termination. Therefore, in tightly coupled

applications, checkpoint approaches provide a feasible solution than replication. The BlobCR use

a dedicated repository of checkpoints that periodically takes the snapshots of the disk attached to

the virtual machine. The aforesaid approach allow using any checkpointing protocol to save the

state of processes into files, including application level (where the process state is managed by

the application itself) and process level mechanism (where the process state is managed

transparently at the level of the message passing library). Moreover, the BlobCR also introduces

a support that allows I/O operations performed by the application to rollback. The BlobCR

6

brings a checkpointing time speedup of up to 8x as compared to the full VM snapshotting based

on qcow2 over Parallel Virtual File System (PVFS) (Gagne 2007). The checkpoints performed

on the whole state of VM are expensive. However, using only a snapshot of the portion of disk is

smaller and faster, even if a reboot is needed.

The disk-based checkpointing strategies are widely used. However, the applications that require

checkpointing frequently, leads to several disk accesses that results in a performance bottleneck.

In the said perspective, several diskless-based checkpoint strategies have been proposed, such as

a multi-level diskless checkpointing (Hakkarinen & Chen 2013). In multi-level checkpointing,

there are N-level of diskless checkpoints. Multiple levels of checkpoints reduce the overhead for

tolerating a simultaneous failure of N processors by layering the diskless checkpointing schemes

for a simultaneous failure of i processors. For example, an N-failure checkpoint can recover any

number of failures from 1, 2,…, N. The multi-level diskless checkpointing scheme can

significantly reduce the fault tolerance time as compared to a one-level scheme. To perform the

multi-level diskless checkpointing, a schedule for diskless checkpoints must be developed for

each level of recovery, such as one, two, or N simultaneous failures. When the checkpoints are

scheduled, the processor takes specific steps to perform the recovery. For instance, if one-level

checkpoint is scheduled, then processor will take only one step back for the recovery. The

coordination of the checkpoints among the processors is important for the consistency of the

checkpoints. If a failure is detected, then an N-level diskless checkpointing mechanism will

attempt to use the most recent checkpoint to recover the state. However, if another failure occurs

during the recovery, then the mechanism will use most recent two-level checkpoint to restore the

state. If the number of failure exceeds the number that is supported, then the system needs to

restart the computation. For any diskless checkpoint there is an overhead of both communication

and calculation. The difference between the disk and diskless checkpointing is prominent when a

failure occurs during a recovery. The system simply restarts from the same checkpoint in disk-

based checkpointing. However, in diskless checkpointing, an earlier checkpoint is used to restore

the state of the system.

B) Checkpoint placement scheme

The number of checkpoints inserted can significantly decrease the performance of the system

during recovery. Moreover, the number of checkpoints must be optimal to minimize the storage.

In the said perspective, several optimized and efficient checkpoint placement strategies are

proposed. One such optimal checkpoint strategy that maximizes the probability of completing all

tasks within the deadline is presented in (Kwak & Yang 2012). In real time systems, the

occurrence of faults is normal rather than exceptions. Every fault is detected at the checkpoint

that comes first after the fault occurrence. In such strategies, the checkpoints are inserted

constantly after certain interval at the execution of the tasks. However, the time limit for the

interval may vary task to task in general. The slack time of each task is identified first and then

the maximum number of re-executable checkpoints are determined that can meet the deadline of

the task. In multi-tasking environment, the slack time is calculated not only by the execution

time of the task but also of execution of the other tasks. Based on the information of the slack

time, formulas are derived that computes the number of checkpoints needs to be re-executed to

meet the deadline of the task. The significance of such checkpoint schemes are that they provide

an integrated solution to multiple real-time tasks by solving a single numerical optimization

problem.

7

Some smart infrastructures are also proposed, such as in (Goiri et al. 2010) that uses Another

Union File System (AUFS), which differentiate between the read-only and read-write parts of the

virtual machine image file. The goal of such infrastructures is to reduce the time needed to make

a checkpoint that will in return reduce the interference time on task execution. The read-only

parts can be checkpointed only once and the read-write checkpoints are incrementally

checkpointed, which means the modifications from the last checkpoints are restored. The

aforesaid checkpoint mechanism can also be implemented in virtualized environment using Xen

hypervisor, where the tasks can be executed on VMs created on demand. Making the checkpoint

of tasks running within a VM may involve moving tons of GBs data as it may include the

information to resume the task on another node, such as task and memory content, and disks

information (Malik et al. 2013). Some checkpoints mechanism mounts the base system as a read

only file system considering the fact that only a small portion of the aforementioned data is

changing with respect to the VM startup. Moreover, the user modifications are stored in an extra

disk space called delta disk. Besides delta disk, which contains user modification data, there is

another read-only disk that contains the base system. The aforementioned disks are merged

together to form a root file system to start the VM. Once the VM is booted, then the user can

work with the file system without worrying about the underlying structure. The checkpoints are

compressed and are stored in Hadoop File System (HDFS) so that the checkpoints are distributed

and replicated in all the nodes. Moreover, by doing the aforesaid the possibility of single point of

failure can also been eliminated.

C) Failures/Faults those are hard to recover

Among all different kind of failures or faults, such as node failures and link failures, the faults

that are really costly and takes longer time to mitigate are Hardware Failures. In case of cloud

computing, several VMs are running on a single physical machine. In such an environment, if a

hardware failure occurs, then all the VMs have to be migrated that incur longer downtime as

compared to a software or application failure. Moreover, the hardware device may require to be

replaced, resulting in longer repair times. The reason for the hardware failures to have a

significant affect is the fact that it may involve (a) device replacement, and (b) migrations,

including VM migrations, which causes the recovery time to increase. Some faults and errors are

hard to detect, such as routing and network misconfigurations. Such kind of faults becomes hard

to recover as it is hard to detect those failures. However, once detected the aforesaid faults

becomes easy to solve and handle.

2.2 Adaptive Fault Tolerance Techniques

Adaptive fault tolerance techniques help the system to maintain and improve the system’s fault

tolerance by adapting to the environmental changes. The adaptive fault tolerance techniques for

the cloud computing, monitors the state of the system and reconfigure the cloud computing

system configurations for the stability of the system in case of error detections. In this

subsection, we will overview, some of the recently proposed adaptive fault tolerance techniques

for the cloud computing paradigm.

8

A) Fault Tolerance for real time applications (FTRT)

The real-time applications that execute on cloud environments range from small mobile phones

to large industrial controls. The highly intensive computing capabilities and scalable virtualized

environment of the clouds help the systems to execute the tasks in real-time. Most of the real-

time systems require high safety and reliability. A fault tolerance model for real-time cloud

computing is proposed in (Malik et al. 2011). The real-time cloud fault tolerance model revolves

around the reliability of the virtual machines. The reliability of the virtual machines is adaptive

and changes after ever computing cycle. The proposed technique depends on the adaptive

behavior of the reliability weights assigned to each processing node. The increase and decrease

in the reliability depends upon the virtual machines to produce the results within the given time

frame. The technique uses a metric to evaluate the reliability. The metric assesses the reliability

level of node against a given minimum reliability threshold. The nodes are removed if the

processing nodes fail to achieve the minimum required reliability level. The primary focus of the

system is on the forward recovery mechanism although both forward and backward recovery

techniques.

B) Dynamic adaptive fault tolerant strategy (DAFT)

The dynamic adaptive fault tolerant strategy (Sun et al. 2013) observes a mathematical

relationship between the failure rates and the two most common fault tolerance techniques

(checkpoints and replications). The historical data of failure rates helps the cloud computing

system to configure itself for the checkpoints or the replicas. A dynamic adaptive checkpoint and

replication model is made by combining the above mentioned two techniques to achieve the

utmost level of service availability and service level objectives (SLOs). The dynamic adaptive

fault tolerant strategy had been evaluated in large-scale cloud data center on fault tolerance

degree, fault tolerance overhead, response time, and system centric parameters. The theoretical

and experimental results presented in the paper (Sun et al. 2013) demonstrate that DAFT

provides highly efficient fault tolerance and great SLO satisfaction.

C) Fault and Intrusion tolerant cloud computing Hardpan (FITCH)

The novel fault tolerant architecture for cloud computing, named FITCH (Fault and Intrusion

tolerant cloud computing Hardpan) supports the dynamic adaptation of replicated services (Cogo

et al 2013). The FITCH provides a basic interface for adding, removing, and replacing replicas.

The FITCH interface also provides all the low level actions to provide end-to-end service

adaptability. The technique was originally designed for the two replication services: a crash fault

tolerant web service and a Byzantine fault tolerant (BFT) key-value store based on state machine

replication. Both the services when deployed with FITCH are easily extendable and adaptable to

various workloads through horizontal and vertical scalability. The number of computing

instances that are responsible for providing the service are increased or decreased in the

horizontal scalability. When there is a requirement to handle the peak users request or to handle

as many faults as possible, the number of computing resources is increased. The decrease in the

number of resources is adapted when there is a requirement to save resources and money. The

vertical scalability is achieved by increasing or decreasing the size and capacity of the allocated

resources. The FITCH adapts the horizontal and vertical scalability depending on the

requirement.

9

D) Byzantine fault tolerance cloud (BFTCloud)

The BFTCloud is a fault tolerant architecture for the voluntary-resource cloud computing (Zhang

et al. 2011). In voluntary-resource cloud computing, infrastructure consists of numerous user-

contributed resources unlike the well managed architecture provided by a large cloud provider.

The architecture of BFTCloud is based on a Byzantine fault tolerance approach. The

architectures operate on five basic operations, the primary node selection, replica selection,

request execution, primary node updating, and replica updating. The primary node is selected

based on QoS requirements. The request for the service is handled by the primary node. The

primary node also selects the 3f+1 replicas from the pool based on QoS requirements. All the

replicas and primary node perform the operation on the request and send back the result to the

primary node. Based on the result, the primary node decides to update the other primary node or

update the replicas. In primary updating, one of the replicas is updated to primary node. In

replica updating, the faulty replica is replaced with a new one. The BFTCloud provides high

reliability and fault tolerance along with better performance.

E) Low latency fault tolerance (LLFT) middleware

A low latency fault tolerance (LLFT) middleware uses the leader/follower replication approach

(Zhao et al. 2010). The middleware consists of a low latency messaging protocol, a leader-

determiner membership protocol, and a virtual determiner framework. The low latency message

protocol provides a reliable and ordered multicast service by communicating a message ordering

information. The ordering is determined by the primary replica in the group. The technique

involves fewer messages as compared to prior fault tolerance systems. A fast reconfiguration

and recovery service is provided by the membership protocol. The reconfiguration service is

required whenever the fault occurs at the replica or some replica joins or leaves the group. The

membership protocol is faster as it finds the primary node deterministically based on the rank

and the degree of the backups. The virtual determiner framework takes the ordering information

from the primary replica and ensures that all the backups get the same ordering information. The

LLFT middleware provides a high degree of fault tolerance and achieves low end-to-end latency.

F) Intermediate data fault tolerant (IFT)

The term intermediate data is defined as the data that is generated during the parallel dataflow

program (Ko et al. 2010). The technique considers the intermediate data as of high priority (first

class citizen). The other techniques either use the store-local approach or distributed file system

(DFS) approach. In store-local approach the data is not replicated and is used in Map outputs in

Hadoop. Although the approach is efficient but is not fault tolerant. In case of a failure of a

server that stores the intermediate data, results in the re-execution of the tasks. In the DFS

approach the data is replicated, but causes too much network overhead. The network overhead

results in the delay of jobs completion time. The DFS approach is used for reduce outputs in

Hadoop. There are three techniques for intermediate data fault tolerance: 1) asynchronous

replication of intermediate data, 2) replication of selective intermediate data, and 3) exploiting

the inherent bandwidth of the cloud data center topology. A new storage system termed as

Intermediate Storage System (ISS) implements the above mentioned techniques for Hadoop.

Hadoop with ISS outperforms the base Hadoop under failure scenarios.

10

G) MapReduce fault tolerance with low latency (MFTLL)

The MapReduce fault tolerance with low latency technique is a passive replication technique on

the top of re-execution of the MapReduce jobs to improve the overall execution time (Zheng

2010). The technique utilizes the extra copies for the tasks in cloud to improve MapReduce fault

tolerance while keeping the latency low. The technique is referred as a passive replication

technique as in passive replication, all copies do not need to be in running state as compared to

the active replication technique. The proposed technique allocates a few (k) backup copies of the

tasks. The backup assignment for each task is based on data locality and on rack locality. The

placement of the back in the locality avoids the heavy network traffic. The backup copy is only

executed if the primary task is failed. The resources which take longer time to execute

(stragglers) are also identified and for these stragglers backups are executed in parallel. The

MapReduce users or cloud providers decide the value of k based on the failure statistics. The

technique also uses a heuristic to schedule backups, move backup instances, and select the

backups upon failure for fast recovery.

H) Adaptive Anomaly Detection System for Cloud Computing Infrastructures (AAD)

An adaptive anomaly detection (AAD) system for cloud computing infrastructure ensures the

availability of the cloud (Pannu et al. 2012). The framework uses the cloud performance data to

discover the future failures. The predicted possible failures are verified by the cloud operators.

The failures are marked as true or false failures on verification. The algorithm recursively learns

and improve the future failure prediction on the verified data. The framework also takes into

account the actual failures that were not previously detected.

In Table 1, we provide a summary of various fault tolerant techniques discussed above. The

schemes are categorized on the basis of methodology, programming framework, environment,

and the type of faults detected.

Table 1: Summary of fault-tolerant strategies.

Strategy
Fault Tolerant

Technique

Programming

Framework
Environment Faults detected

(Nicolae &

Cappello 2011)

Disk-based

Checkpoint
MPI IaaS cloud Node/ network failure

(Hakkarinen &

Chen 2013)

Diskless-based

Checkpoint
NA HPC

Process/Application

failure

(Kwak & Yang

2012)
Checkpoint

Probability

analytic

framework

Real-time

systems
Process failures

(Goiri et al. 2010) Checkpoint Java
Virtual

Machine
Node failure

(Malik et al. 2011) FTRT (Adaptive) - Real-time -

(Sun et al. 2013) DAFT (Adaptive) Java
Large scale

Cloud

Works on historical

failure rate

(Cogo et al 2013) FITCH (Adaptive) Java
Large scale

Cloud
-

(Zhang et al. 2011)
BFTCloud

(Adaptive)
Java

Voluntary-

resource cloud
Byzantine Problems

11

(Zhao et al. 2010) LLFT (Adaptive) C++ Middleware Replication faults

(Ko et al. 2010) IFT(Adaptive) Hadoop Hadoop
Intermediate data

faults

(Zheng 2010)
MFTLL

(Adaptive)
MapReduce MapReduce

Replication faults,

stragglers detection

(Pannu et al. 2012) AAD (Adaptive) --- Local Cloud
Discovers future

failures

4. CONCLUSIONS

In this chapter, we study the fault tolerance and illustrate various state of the art fault tolerant

strategies for the cloud environments. Fault tolerance is a major concern in the cloud

environments to guarantee availability of critical services, application execution, and hardware.

As the cloud computing systems continue to grow in their scale and complexity, it is of critical

importance to ensure the stability, availability, and reliability in such systems. The cloud

environments are susceptible to failure because of varying execution environments, addition and

removal of system components, frequent updates and upgrades, online repairs, intensive

workload on the servers. The reliability of such systems can be easily compromised if the

proactive measures are not taken to tackle the possible failures emerging in the cloud

subsystems. We discussed various types of faults, and the different ways that are in use to tackle

such faults. The chapter also mentions some the methods to validate the fault-tolerance of a

system and the various metrics that quantify the fault-tolerance. In the end, we discuss the state

of the art techniques for fault tolerance in cloud and a taxonomy of fault tolerant schemes is also

presented.

REFERENCE

Greenberg, A., Hamilton, J., Maltz, D., and Patel, P. (2009) ‘The Cost of a Cloud: Research

Problems in Data Center Networks,’ ACM SIGCOMM Computer Communication Review, vol.

39, no. 1, pp. 68-79.

ITProPortal, http://www.itproportal.com/2012/07/12/o2outage-latest-string-major-it-

infrastructure-failures/, 2012.

Bilal, K, Malik, S., Khan, S. U., & Zomaya, A. (2014) ‘Trends and Challenges in Cloud Data

Centers,’ IEEE Cloud Computing Magazine, vol. 1, no. 1, pp. 10-20, 2014.

Bauer, E., & Adams, R. (2012). Reliability and availability of cloud computing: John Wiley &

Sons.

Koren, I., & Krishna, C. M. (2010). Fault-tolerant systems: Morgan Kaufmann.

Gagne, M, 2007, ‘Cooking with Linux—still searching for the ultimate Linux distro?’, Linux

Journal, vol. 09, no. 161.

12

Goiri, I, Julia, F, Guitart, J, & Torres, J, 2010, ‘Checkpoint-based fault-tolerant infrastructure for

virtualized service providers’, In IEEE Network Operations and Management Symposium

(NOMS), pp. 455-462.

Hakkarinen, D, & Chen, Z, 2013, ‘Multi-Level Diskless Checkpointing’, IEEE Transactions On

Computers, vol. 62, no.4, pp. 772-783.

Kwak, SW, & Yang, JM, 2012, ‘Optimal checkpoint placement on real-time tasks with harmonic

periods’, Journal of Computer Science and Technology, vol. 27, no. 1, pp. 105-112.

Nicolae, B, & Cappello, F, 2011, ‘BlobCR: efficient checkpoint-restart for HPC applications on

IaaS clouds using virtual disk image snapshots’, ACM International Conference for High

Performance Computing, Networking, Storage and Analysis.

Malik, S, R, Khan, S, U, and Srinivasan, S, K, 2013, ‘Modeling and Analysis of State-of-the-art

VM-based Cloud Management Platforms’, IEEE Transactions on Cloud Computing, vol. 1, no.

1, pp. 50-63.

Malik, S & Huet, F 2011, ‘Adaptive Fault Tolerance in Real Time Cloud Computing’, In IEEE

World Congress on Services (SERVICES), pp. 280-287.

Sun, D, Chang, G, Miao, C, & Wang, X 2013, Analyzing, modeling and evaluating dynamic

adaptive fault tolerance strategies in cloud computing environments, The Journal of

Supercomputing, 1-36.

Cogo, V V, Nogueira, A, Sousa, J, Pasin, M, Reiser, HP, & Bessani, A 2013, ‘FITCH:

Supporting Adaptive Replicated Services in the Cloud’, In Distributed Applications and

Interoperable Systems, pp. 15-28. Springer Berlin Heidelberg.

Zhang, Y, Zheng, Z, & Lyu, M R 2011, ‘BFTCloud: A byzantine fault tolerance framework for

voluntary-resource cloud computing’, In IEEE International Conference on Cloud Computing

(CLOUD), pp. 444-451.

Zhao, W, Melliar-Smith, PM, & Moser, L E 2010, ‘Fault tolerance middleware for cloud

computing’, In IEEE 3rd International Conference on Cloud Computing (CLOUD), pp. 67-74.

Ko, S Y, Hoque, I, Cho, B, & Gupta, I 2010, ‘Making cloud intermediate data fault-tolerant’,

In Proceedings of the 1st ACM symposium on Cloud computing, pp. 181-192.

Zheng, Q. 2010, ‘Improving MapReduce fault tolerance in the cloud’, In IEEE International

Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), pp. 1-

6.

13

Pannu, H S, Liu, J, & Fu, S 2012, ‘AAD: Adaptive Anomaly Detection System for Cloud

Computing Infrastructures’, In IEEE 31st Symposium on Reliable Distributed Systems (SRDS),

pp. 396-397.

